Part Number Hot Search : 
ADAM6000 UC3843AN BBAP05A BZ5258 271M547 2SB1187 BAW56 2SD0638
Product Description
Full Text Search
 

To Download HCC4538 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 HCC4538B HCF4538B
DUAL MONOSTABLE MULTIVIBRATOR
.RETRI .TRI .TRI .QANDQBUFFEREDOUTPUTSAVAI .SEPARATERESETS .WI .QUI .5V,10V,AND15VPARAMETRI .SCHMI .I .100%TESTEDFORQUI .MEETSALLREQUI
DESCRIPTION
GGERABLE/RESETTABLE CAPABILITY GGER AND RESET PROPAGATION DELAYS INDEPENDENT OF RX, CX GGERING FROM LEADING OR TRAILING EDGE LABLE DE RANGE OF OUTPUT-PULSE WIDTHS ESCENT CURRENT SPECIFIED TO 20V FOR HCC DEVICE C RATINGS TT TRIGGER INPUT ALLOWS UNLIMITER RISE AND FALL TIMES ON + TR AND - TR INPUTS NPUT CURRENT OF 100nA AT 18V AND 25C FOR HCC DEVICE ESCENT CURRENT REMENTS OF JEDEC TENTATIVE STANDARD N 13A, "STANDARD SPECIFICATIONS FOR DESCRIPTION OF "B" SERIES CMOS DEVICES"
EY (Plastic Package) F (Ceramic Package)
M1 (Micro Package)
C1 (Chip Carrier)
ORDER CODES : HCC4538BF HCF4538BM1 HCF4538BEY HCF4538BC1
The HCC4538B (extended temperature range) and HCF4538B (intermediate temperature range) are monolithic integrated circuit, available in 16-lead dual in-line plastic or-ceramic package and plastic micro package. The HCC/HCF4538B dual precision monostable multivibrator provides stable retriggerable/resettable one-shot operation for any fixedvoltage timing application. An external resistor (RX) and an external capacitor (CX) control the timing and accuracy for the circuit. Adjustment of RX and CX provides a wide range of output pulse widths from the Q and Q terminals. The time delay from trigger input to output transition (trigger propagation delay) and the time delay from reset input to output transition (reset propagation delay) are independent of RX and CX. Precision control of output pulse widths is achieved through linear CMOS techniques. Leading-edge-triggering (+ TR) and trailing-edge-triggering (- TR) inputs are provided for triggering from either edge of an input pulse. An unused + TR input should be tied to VSS. An unused - TR input should be tied to VDD. A RESET (on low level) is provided for immediate termination of the output pulse or to
September 1988
PIN CONNECTIONS
1/14
HCC/HCF4538B
prevent output pulses when power is turned on. An unused RESET input should be tied to VDD. However, if an entire section of the HCC/HCF4538B is not used, its inputs must be tied to either VDD or VSS (see table 1). In normal operation the circuit triggers (extends the output pulse one period) on the application of each new trigger pulse. For operation in the non-retriggerable mode, Q is connected to - TR FUNCTIONAL DIAGRAM when leading-edge triggering (+ TR) is used or Q is connected to + TR when trailingedge triggering (- TR) is used. The time period (T) for this multivibrator can be calculated by : T = RX CX. The min. value of external resistance, RX, is 4K. The max. and min. values of external capacitance, C X, are 100F and 5nF, respectively.
ABSOLUTE MAXIMUM RATING
Symbol VDD * Vi II Ptot Parameter Supply Voltage: HCC Types HCF Types Input Voltage DC Input Current (any one input) Total Power Dissipation (per package) Dissipation per Output Transistor for Top = Full Package Temperature Range Operating Temperature: HCC Types HCF Types Storage Temperature Value -0.5 to +20 -0.5 to +18 -0.5 to VDD + 0.5 10 200 100 -55 to +125 -40 to +85 -65 to +150 Unit V V V mA mW mW
o o
Top Tstg
C C o C
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress ratingonly and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability. * All voltage values are referred to VSS pin voltage.
RECOMMENDED OPERATING CONDITIONS
Symbol VDD VI Top Parameter Supply Voltage: HCC Types HCF Types Input Voltage Operating Temperature: HCC Types HCF Types Value 3 to 18 3 to 15 0 to VDD -55 to +125 -40 to +85 Unit V V V
o o
C C
2/14
HCC/HCF4538B
LOGIC DIAGRAM (1/2 of device shown)
TABLE 1: Functional Terminal Connections
VDD to Term. NO Function Mono (1) Leading-Edge Trigger/Retriggerable Leading-Edge Trigger/Non-retriggerable Trailing-Edge Trigger/Retriggerable Trailing-Edge Trigger/Non-retriggerable 3, 5 3 3 3 Mono (2) 11, 13 13 13 13 4 12 Mono (1) Mono (2) VSS to Term. NO Input Pulse to Term. No Mono (1) 4 4 5 5 Mono (2) 12 12 11 11 4, 6 12, 10 5, 7 11, 9 Other Connections Mono (1) Mono (2)
Notes : 1. A Retriggerable one-shot multivibrator has an output pulse width which is extended on full time period (T) after application of the last trigger pulse. 2. A Non-retriggerable one-shot multivibrator has a time period (T) referenced from the application of the first trigger pulse.
Pulse Width
3/14
HCC/HCF4538B
STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)
Test Conditios Symbol IL Parameter Quiescent Current VI (V) 0/5 HCC Types 0/10 0/15 0/20 HCF Types V OH Output High Voltage Output Low Voltage Input High Voltage Input Low Voltage Output Drive Current 0/5 HCC Types 0/5 0/10 0/15 0/5 HCF Types 0/5 0/10 0/15 IOL Output Sink Current HCC Types HCF Types IIH, IIL CI Input Leakage Current Input Capacitance 0/5 0/10 0/15 0/5 0/10 0/15 0/18 0/5 0/10 0/15 0/5 0/10 0/15 5/0 10/0 15/0 VIH 0.5/4.5 1/9 1.5/13.5 4.5/0.5 9/1 13.5/1.5 2.5 4.6 9.5 13.5 2.5 4.6 9.5 13.5 0.4 0.5 1.5 0.4 0.5 1.5 Any Input Any Input <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 VO (V) |IO| VDD (A) (V) 5 10 15 20 5 10 15 5 10 15 5 10 15 5 10 15 5 10 15 5 5 10 15 5 5 10 15 5 10 15 5 10 15 18 -2 -0.64 -1.6 -4.2 -1.8 -0.61 -1.5 -4 0.64 1.6 4.2 0.61 1.5 3.6 0.1 3.5 7 11 1.5 3 4 -1.6 -0.51 -1.3 -3.4 -1.6 -0.51 -1.3 -3.4 0.51 1.3 3.4 0.51 1.3 3.4 -3.2 -1 -2.6 -6.8 -3.2 -1 -2.6 -6.8 1 2.6 6.8 1 2.6 6.8 10-5 5 0.1 7.5 4.95 9.95 14.95 0.05 0.05 0.05 3.5 7 11 1.5 3 4 -1.15 -0.36 -0.9 -2.4 -1.3 -0.42 -1.1 -2.8 0.36 0.9 2.4 0.42 1.1 2.8 1 A pF mA mA TLOW * Min. Max. 5 10 20 100 5 10 20 4.95 9.95 14.95 Value 25 oC Min. Typ. Max. 0.04 0.04 0.04 0.08 0.04 0.04 0.04 5 10 15 0.05 0.05 0.05 3.5 7 11 1.5 3 4 V V 5 10 20 100 5 10 20 4.95 9.95 14.95 0.05 0.05 0.05 V V THIGH * Min. Max. 150 300 600 3000 150 300 600 A Unit
VOL
V IL
IOH
* TLOW = -55 oC for HCC device: -40 oC for HCF device. * THIGH = +125 oC for HCC device: +85 oC for HCF device. The Noise Margin for both "1" and "0" level is: 1V min. with VDD = 5 V, 2 V min. with VDD = 10 V, 2.5 V min. with VDD = 15 V
4/14
HCC/HCF4538B
DYNAMIC ELECTRICAL CHARACTERISTICS (Tamb = 25 o C, C L = 50 pF, RL = 200 K, o typical temperature coefficent for all VDD values is 03 %/ C, all input rise and fall times= 20 ns)
Symbol tTLH tTHL tPLH tPHL tPLH tPHL tWH tWL tWT Transition Time Parameter Test Conditions VDD (V) 5 10 15 5 10 15 RL = 1K 5 10 15 RL = 1K 5 10 15 5 10 15 5 10 15 5 10 15 5 10 15 5 10 15 Any Input Min. Value Typ. 100 50 40 300 150 100 250 125 95 80 40 30 60.6 58.9 59.1 9.97 9.95 10.00 1.00 1.00 1.00 1 1 1 Max. 200 100 80 600 300 220 500 250 190 140 80 60 64.5 63.0 63.5 10.5 10.6 10.6 1.06 1.06 1.07 Unit
ns
Propagation Delay Time +TR or -TR to Q or Q Propagation Delay Time Reset to Q or Q Minimum Input Pulse Width +TR, -TR or Reset Output Pulse Width - Q or Q (CX = 0.005 F, RX = 10 K *) Output Pulse Width - Q or Q (CX = 0.1 F, RX = 100 K) Output Pulse Width - Q or Q (CX = 10 F, RX = 100 K) Pulse Width Match Between 100 (T - T ) 1 2 Circuits in Same Package: T1 (CX = 0.1 F, RX = 100 K) Minimum Retrigger Time
ns
ns
ns
tWT
tWT
57 55 55 9.4 9.4 9.5 0.95 0.95 0.96
s
ms
s
tW
%
trr
0 0 0 5 7.5
ns pF
CIN
Input Capacitance
* Minimum RX value = 4 K, minimum CX value = 500 pF
5/14
HCC/HCF4538B
Typical Output Low (sink) Current Characteristics Minimum Output Low (sink) Current Characteristics
Typical Output High (source) Current Characteristics
Minimum Output High (source) Current Characteristics
Typical Propagation Delay Time as a Function of Load Capacitance (+TR or -TR to Q or Q)
Typical Propagation Delay TIme as a Function of Load Capacitance (RESET to Q or Q)
6/14
HCC/HCF4538B
Typical Transition Time as a Function of Load Capacitance Typical Pulse Width Variation as a Function of Supply Voltage
Typical Pulse Width Variation as a Function of Temperature
Typical Pulse Width Variation as a Function of Temeprature
Typical Total Supply Current as a Function of Output Duty Cycle
7/14
HCC/HCF4538B
Power Down Mode During a rapid power-down conditiona, as would occur with a power supply short circuit or with a poorly filtered power supply, the energy stored in CX could discharge into Pin 2 or 14. To Avoid possible device damage in this mode, when CX is 0.5 microfarad, a aprotection diode with a 1 Ampere or higher rating (1N5395 or equivalent) and a separate ground return for C X should be provided as shown in Fig. 1 Figure 1: rapid Power Down Protection Circuit An alternate protection method is shown in Fig. 2, where a 51 current limit resistor is inserted in series with CX. Note that a small pulse width decrease will occour however, and RX must be appropriately increased to obtain the originally desired pulse width.
Figure 2: Alternate rapid Power Down Protection Circuit
8/14
HCC/HCF4538B
TEST CIRCUITS Quiescent Device Current. Noise Immunity.
Input Leakage Current.
9/14
HCC/HCF4538B
Plastic DIP16 (0.25) MECHANICAL DATA
mm MIN. a1 B b b1 D E e e3 F I L Z 3.3 1.27 8.5 2.54 17.78 7.1 5.1 0.130 0.050 0.51 0.77 0.5 0.25 20 0.335 0.100 0.700 0.280 0.201 1.65 TYP. MAX. MIN. 0.020 0.030 0.020 0.010 0.787 0.065 inch TYP. MAX.
DIM.
P001C
10/14
HCC/HCF4538B
Ceramic DIP16/1 MECHANICAL DATA
mm MIN. A B D E e3 F G H L M N P Q 7.8 2.29 0.4 1.17 0.22 0.51 0.38 17.78 2.79 0.55 1.52 0.31 1.27 10.3 8.05 5.08 0.307 0.090 0.016 0.046 0.009 0.020 3.3 0.015 0.700 0.110 0.022 0.060 0.012 0.050 0.406 0.317 0.200 TYP. MAX. 20 7 0.130 MIN. inch TYP. MAX. 0.787 0.276
DIM.
P053D
11/14
HCC/HCF4538B
SO16 (Narrow) MECHANICAL DATA
DIM. MIN. A a1 a2 b b1 C c1 D E e e3 F G L M S 3.8 4.6 0.5 9.8 5.8 1.27 8.89 4.0 5.3 1.27 0.62 8 (max.) 0.149 0.181 0.019 10 6.2 0.35 0.19 0.5 45 (typ.) 0.385 0.228 0.050 0.350 0.157 0.208 0.050 0.024 0.393 0.244 0.1 mm TYP. MAX. 1.75 0.2 1.65 0.46 0.25 0.013 0.007 0.019 0.004 MIN. inch TYP. MAX. 0.068 0.007 0.064 0.018 0.010
P013H
12/14
HCC/HCF4538B
PLCC20 MECHANICAL DATA
mm MIN. A B D d1 d2 E e e3 F G M M1 1.27 1.14 7.37 1.27 5.08 0.38 0.101 0.050 0.045 9.78 8.89 4.2 2.54 0.56 8.38 0.290 0.050 0.200 0.015 0.004 TYP. MAX. 10.03 9.04 4.57 MIN. 0.385 0.350 0.165 0.100 0.022 0.330 inch TYP. MAX. 0.395 0.356 0.180
DIM.
P027A
13/14
HCC/HCF4538B
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use ascritical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics. (c) 1994 SGS-THOMSON Microelectronics - All Rights Reserved SGS-THOMSON Microelectronics GROUP OF COMPANIES Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A
14/14


▲Up To Search▲   

 
Price & Availability of HCC4538

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X